# Periodic Properties of Atoms

Chapter 9



## **Effective Nuclear Charge (Z**<sub>eff</sub>)

 Effective nuclear charge is the "positive charge" felt by valence electrons

$$Z_{eff} = Z - \sigma$$

+8

e

Z is the actual nuclear charge

 $\sigma$  is the shielding constant (repulsive effect of other electrons)



## **Atomic Radii**

## Horizonal Trend

To the right → more P+ →
 electron cloud attracted to the
 center → smaller size

Vertical Trend Go down → more energy levels → bigger size





## Ionic Size

- Cation is always smaller than atom from which it formed.
- Anion is always larger than atom from which it is formed

9

For each of the following pairs, indicate which one of the two species is larger  $p^+ = e^-$ 

10

10

4

- a)  $N^{3-}$  or  $F^{-}$
- b)  $Mg^{2+}$  or  $Ca^{2+}$
- c)  $Fe^{2+}$  or  $Fe^{3+}$

## Fe<sup>st</sup> 26 (23) Fe<sup>st</sup> 26 (23)



### **Ionization energy**

- Maximum energy (KJ/mol) required to remove an electron from a gaseous atom in its ground state. I from the most outer energy level,
- You can remove one electron at a time
- Each succeeding ionization energy is larger than the preceding energy





#### Horizonal Trend

 To the right → more p+ → more attraction → need more energy to overcome the attraction when an e- is removed.

#### Vertical Trend

- Go down  $\rightarrow$  More layers of electron  $\rightarrow$  the valence electron is further away from the center (less attraction) AND there are more electrons in between the nucleus and the valence electron (less attraction)  $\rightarrow$  need less energy to overcome the attraction when an e- is removed.





#### **Exception in Ionization Energy Trend**

P orbital is stable when it is half-filled or fully filled. P orbital in Nitrogen is already at the stable state. So removing an electron from there is difficult (takes more energy). However, P orbital in Oxygen has one extra from the stable state. So removing an electron actually helps it to go back to the stable state. So it is easier (takes less energy)







## **Electron Affinity (EA)**

 Electron affinity is the amount of energy released when an electron is added to a neutral atom or molecule in the gaseous state to form a negative ion

## Ex) $F_{(g)} + e^{-} \rightarrow F^{-}(g)$ $\Delta H = -328 \text{ kJ/mol} (negative sign = release)$

Amount of energy released is 328 kJ/mol when the electron is gained. Meaning, that much energy is needed to detach the electron from F.

Large EA means the negative ion is very stable.



## **Electron affinity**

- amount of energy that is released when an electron attaches to the atom

#### Electronegativity

- quantification of a molecules ability to attract an electron and form a covalent bond.
- Cannot be measured scientific means. It depends on the molecule that it is bonded to.



- To the right  $\rightarrow$  more p+  $\rightarrow$  more attraction

## **Vertical Trend**

- Go down  $\rightarrow$  More layers of electron  $\rightarrow$  the valence electron is further away from the center (less attraction) AND there are more electrons in between the nucleus and the valence electron (less attraction)



**CHAPTER 10** 

# **Chemical Bonding**

# Types of Bonds



Intermolecular forces are attractive forces between molecules Intramolecular forces hold atoms together in a molecule

<u>Intermolecular vs Intramolecular</u>

41 kJ to vaporize 1 mole of water (inter)

930 kJ to break all O-H bonds in 1 mole of water (intra)

Generally, intermolecular forces are much weaker than intramolecular forces





## Types of bonds

Chemical bond

- A force that holds atoms together in a molecule or compound
- Two types of chemical bonds
- Ionic Bonds
- Covalent Bonds

A CaCO<sub>3</sub> B CO

tht @ The McGraw-Hill Companies, Inc. Permission required for reproduction or disp



## TABLE 8.2 General Properties of Ionic and Covalent Substances

| Ionic                                                   | Covalent                                               |
|---------------------------------------------------------|--------------------------------------------------------|
| Crystalline solids                                      | Gases, liquids, or solids                              |
| Hard and brittle solids                                 | Brittle and weak solids, or soft and waxy solids       |
| Very high melting point                                 | Low melting point                                      |
| Very high boiling point                                 | Low boiling point                                      |
| Good electrical conductor when molten or<br>in solution | Poor conductor of electricity and heat                 |
| Often soluble in water but not in carbon tetrachloride  | Often soluble in carbon tetrachloride but not in water |



## Ionic and Covalent

- In ionic compounds, ions are held together by electrostatic forces – forces between oppositely charged ions.
- In molecular compounds, atoms are held together by covalent bonds in which electrons are shared.





## **Ionic Bonds**



- A bond created by electrostatic attraction between oppositely charged ions
- Occurs between a metal and a nonmetal
- Electrons transferred between the cation (positively charged ion) and the anion (negatively charged ion)
- Extremely strong bonds





- Metals lose electrons, forming a positive charge, to become cations.
- Nonmetals gain electrons, forming a negative charge, to become anions.
- Formation of ions and ionic bonds relates to an element's electron configuration.
- Many main-group elements either lose or gain electrons to become isoelectronic with a noble gas (i.e. have the same electron configuration). As ions, they are known as the common ions.



## **Covalent Bonds**

- A bond created by the sharing of electrons between atoms
- Occurs between two nonmetals
- Electrons typically shared in pairs
- Weaker bonds than ionic bonds







## Polarity



The degree of transfer of electrons in a covalently bonded molecule composed of different element's atoms.





## Polar vs. Nonpolar

#### **Polar covalent**

- Unequal sharing (or a partial transfer) of electrons
- Occurs when different elements are covalently bonded to one another
  - Why different elements?
    - Because different elements have different electronegativities
- Typically shorter bonds
- Stronger bonds due to their increased ionic character

#### Nonpolar covalent

- Equal sharing (no transfer) of electrons
- Occurs only when all of the atoms in a molecule belong to the same element
- Typically longer bonds
- Weaker bonds





## **Dipole Moment**

- $\delta$  (delta) means "partial"
  - $\delta$ + "partially positive"  $\delta$ - "partially negative"
- Arrow points toward negative side (more electronegative)
- Cross is at the positive side





## **Electronegativity Trends**

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.





Which of the following molecules have polar bonds? If a bond is polar, which atom has a partial negative charge?

1.  $SO_2$  5 - - O2.  $N_2$  N - - N 3.  $H_2S$ 4.  $CCl_4$ 

# Lewis Dot Structure



## Valence electrons E IVI.

- Valence electrons are the most outer shell electrons of an atom. The valence electrons are the electrons that participate in chemical bonding.
- Valence electron of a transition metal is 2. why?



| Group | e- configuration | <u># of valence e</u> |
|-------|------------------|-----------------------|
| 1A    | ns1              | 1                     |
| 2A    | ns <sup>2</sup>  | 2                     |
| 3A    | ns²np¹           | 3                     |
| 4A    | ns²np²           | 4                     |
| 5A    | ns²np³           | 5                     |
| 6A    | ns²np4           | 6                     |
| 7A    | ns²np⁵           | 7                     |





Lewis Periodic Table Showing Outer Shell (Valence) Electrons 5 6 3 8 2 4 7 •He• H Ne •0• 回 25 •B F Li• •N• F۰ •Be• • C 29 An • P • • Si• ٠s٠ Cl• :Ar: Na• •Mg• • ...

| K•  | •Ca• | •Ga• | •Ge•  | •As • | • Se•  | Br• | Kr |  |
|-----|------|------|-------|-------|--------|-----|----|--|
| Rb• | •Sr• | •In• | • Sn• | •Sb•  | • Te • | I   | Xe |  |

Cs• •Ba•



## The Ionic Bond

- Ionic Bond: the electrostatic force that holds ions together in an ionic compound. (formed by a metal and a non-metal)



Use Lewis dot symbols to show the formation of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>) \*Al \*Al \*Al



## Lewis structure of water single covalent bonds $H^{\bullet} + \bullet O^{\bullet} + \bullet H \longrightarrow H^{\bullet} O^{\bullet} H^{\bullet} O^{\bullet} H^{\bullet}$ or $H^{\bullet} O^{\bullet} H^{\bullet} H^{\bullet}$ $2e^{-} 8e^{-} 2e^{-}$

## **Covalent Bond**

- A Covalent bond is a chemical bond in which two or more electrons are shared by two atoms.  $H^{-c}$ , H

Double bond – two atoms share two pairs of electrons



Triple bond – two atoms share three pairs of electrons

or







## Lengths of Covalent Bonds

- Bond length depends on the size of the elements
- Bond length gets shorter with more bonds
  - Triple bond < Double < Single
- Shorter the length, stronger it gets



Some Common Single, Double, and Triple Bonds Bond Length **Bond Type** (pm) C-H 107 C-0 143 C=0121 C-C 154 C=C 133 C=C 120C-N 143 C=N138 igger Size C=N 116 N-O136 had N=0122 0—H 96

Average Bond Lengths of



## **Steps for Writing Lewis Structures**

- 1. Write an atomic skeleton.
- 2. Place all the valence electrons
- 3. Connect two electrons to make a single bond
- Check by the octet rule—if it doesn't satisfy it, try double bond or transfer e-
  - Octet Rule having 8 electrons per element





**Resonance** - Same formula, different e- location  $\begin{pmatrix} A = B - C \\ A - B = C \end{pmatrix}^{L}$ 

$$CH_{3}-C \stackrel{\oplus}{=} N \stackrel{\oplus}{=} \stackrel{\odot}{:} \stackrel{\oplus}{\longrightarrow} CH_{3}-C \stackrel{\oplus}{=} N \stackrel{\odot}{=} \stackrel{\odot}{:} \stackrel{\odot}{\longrightarrow} CH_{3}-\stackrel{\odot}{:} \stackrel{\oplus}{=} N \stackrel{\oplus}{=} \stackrel{\odot}{:} \stackrel{\odot}{\longrightarrow} CH_{3}-\stackrel{\odot}{:} \stackrel{\oplus}{=} N \stackrel{\oplus}{=} \stackrel{\odot}{:} \stackrel{\odot}{\longrightarrow} III$$

#### Isomers

- Same formula, different atom location





## Which of the following has resonance? For those that do, how many resonance structures do they have?

 $NO_3^-$ 

 $CH_4$ 

H<sub>2</sub>CO

HNO<sub>3</sub>



#### **Exceptions to the Octet Rule**

- Molecules with an odd number of electrons - e.g. NO

- Incomplete octets
  - e.g  $BH_3$  or  $BF_3$
- Expanded octets
  - e.g.  $SF_4$  or  $SF_6$

н 🧭









## **Formal Charge**

- Formal charge = number of valence electrons - (number of lone-pair electrons + 1/2 number of bonding electrons)
  - "lone pair electrons" are also known as "nonbonding pairs" or "unshared pairs".
- The sum of formal charges of the Lewis structure of a molecule or ion must be equal to the net charge on the molecule or ion.





## **Using Formal Charge**

- Having zero formal charge means it has the right amount of electrons for that element.
  - Negative formal charge = excess electrons
  - Positive formal charge = missing electrons
- In case of non-zero formal charge
  - More electronegative elements = negative formal charge
  - Less electronegative elements = positive formal charge





# Shapes of Molecules



## **Predicting Shapes of Molecules**

- A simple model used with Lewis structures allows us to predict shapes of molecules.
- Valence-Shell Electron-Pair Repulsion Theory (VSEPR theory) is based on the fact that negative charges repel one another.
  - Valence electron pairs (bonding or nonbonding) repel one another and take up positions that maximize their distance and angles between them.

300 pm

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display















## Practice

| PF <sub>5</sub>   | $CS_2$             | BrO <sub>3</sub> - |
|-------------------|--------------------|--------------------|
| NH4 <sup>+</sup>  | SCl4               | BrF <sub>5</sub>   |
| BF <sub>3</sub>   | SCl <sub>6</sub>   | PH <sub>3</sub>    |
| NF <sub>3</sub>   | SO4 <sup>2-</sup>  | CO3 <sup>2-</sup>  |
| SiCl <sub>4</sub> | ClO <sub>3</sub> - | CH <sub>2</sub> O  |
| NO3 <sup>-</sup>  | O <sub>3</sub>     | CCl <sub>4</sub>   |
| AlH <sub>3</sub>  | SO <sub>2</sub>    | SO3                |
| со                | CHCl <sub>3</sub>  | BrF <sub>3</sub>   |
| $H_2S$            | I <sub>3</sub> -   | $H_3O^+$           |

| Ventura<br>COLLEGE | PF5                                                                                                                                                                                  | F. :F:<br>P:F:<br>F. :F:       | 40 electrons<br>tbp<br>tbp                         | CS <sub>2</sub>    | :š::C::š:                                   | 16 electrons<br>linear<br>linear        | BrO <sub>3</sub> -            | :Ö:Br.Ö:<br>:Ö:                  | 26 electrons<br>Td<br>trigonal рут.                |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------|--------------------|---------------------------------------------|-----------------------------------------|-------------------------------|----------------------------------|----------------------------------------------------|
|                    | NH4 <sup>+</sup>                                                                                                                                                                     | H:N:H<br>H:N:H<br>H            | 8 electrons<br>Td<br>Td                            | SCl <sub>4</sub>   | ្ដុះដូរ<br>:ដូរៈ ន៍ :ដូរ:<br>:ដូរៈ          | 34 electrons<br>tbp<br>see-saw          | BrF <sub>5</sub>              | F Br F                           | 42 electrons<br>Oh<br>square pyr.                  |
|                    | $BF_3 \qquad \begin{array}{c} \vdots \vec{F} \\ \vdots \vec{F} \\ \vdots \vec{F} \end{array} \qquad \begin{array}{c} \vdots \vec{F} \\ \vdots \vec{F} \\ \vdots \vec{F} \end{array}$ |                                | 24 electrons<br>trigonal planar<br>trigonal planar | SCl6               | ci <sup>, :Cli</sup> :ci;<br>s<br>.ci: :ci: | 48 electrons<br>Oh<br>Oh                | PH <sub>3</sub>               | н:ё:н<br>Й                       | 8 electrons<br>Td<br>trigonal pyr.                 |
|                    | NF <sub>3</sub>                                                                                                                                                                      | 谱N:带<br>E:                     | 26 electrons<br>Td<br>trigonal pyr.                | SO4 <sup>2-</sup>  | :Ö:<br>:Ö:š:Ö:<br>:Ö:                       | 32 electrons<br>Td<br>Td                | CO3 <sup>2-</sup>             | ະຕິ:<br>ເຕີເຕີເຕີເ               | 24 electrons<br>trigonal planar<br>trigonal planar |
|                    | SiCl <sub>4</sub>                                                                                                                                                                    | ះប៉ុះ<br>:ប៉ុះនោះប៉ុះ<br>:ប៉ុះ | 32 electrons<br>Td<br>Td                           | ClO <sub>3</sub> - | ង្កីះប៉ី ឆ្លី:<br>ឆ្ល                       | 26 electrons<br>Td<br>trigonal pyr.     | CH <sub>2</sub> O             | H<br>H:Č::Ö:                     | 12 electrons<br>trigonal planar<br>trigonal planar |
|                    | NO3<br>:0:N::0:<br>:0:                                                                                                                                                               |                                | 24 electrons<br>trigonal planar<br>trigonal planar | o₃<br>:ö:ö::ö:     |                                             | 18 electrons<br>trigonal planar<br>bent | CCI4                          | ះពីរះ<br>រដ្ឋាះ ចុះពីរ<br>រដ្ឋាះ | 32 electrons<br>Td<br>Td                           |
|                    | AlH <sub>3</sub>                                                                                                                                                                     | н:аі:н<br>Н                    | 6 electrons<br>trigonal planar<br>trigonal planar  | SO <sub>2</sub>    | :0:s::0:                                    | 18 electrons<br>trigonal planar<br>bent | SO3                           | :ö:<br>:ö: š::ö:                 | 24 electrons<br>trigonal planar<br>trigonal planar |
|                    | со                                                                                                                                                                                   | :C:::O                         | 10 electrons<br>linear<br>linear                   | CHCl3              | ះព៉ះដឹះព៉ះ<br>:ព៉ះ                          | 26 electrons<br>Td<br>Td                | BrF3                          | :F:Br:F:<br>:F:                  | 28 electrons<br>tbp<br>T-shaped                    |
|                    | H <sub>2</sub> S                                                                                                                                                                     | H:S:H                          | 8 electrons<br>Td<br>bent                          | I <sub>3</sub> -   | : <u>]:]</u> :]:                            | 22 electrons<br>tbp<br>linear           | H <sub>3</sub> O <sup>+</sup> | н:ё:н                            | 8 electrons<br>Td<br>trigonal pyr.                 |



## **Change in Bond Angle**

- Lone pairs pushes the other elements
- A shoelementsrter bond pushes the other elements
- Larger elements pushes the smaller elements





## **Electronegativity in Molecular Bonding**

- Polar covalent bond, or polar bond is a covalent bond with greater electron density around one of the two atoms. This occurs due to uneven electronegativity.







- If one element has much stronger electronegativity, it will just take away the electron from the other element (transfer of e-)
- When they have similar electronegativity, they will share that electron.

| <u>Difference</u> | Bond Type      |
|-------------------|----------------|
| 0                 | Covalent       |
| ≥ <b>2</b>        | Ionic          |
| 0 < and <2        | Polar Covalent |



- -----

## Net Dipole

- Sum of dipole moments of the molecule = net dipole
- A molecule can have a polar bond, but it may not possess a dipole moment if it is in a symmetrical geometry







#### Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display







- NH<sub>3</sub>
- BH<sub>3</sub>
- CS<sub>2</sub>
- $H_2S$
- $CH_2Cl_2$