43/50

Quiz 1 (Chapter 12)

Name: <u>MC1Sey</u> Swanson

	Zero-Order	First-Order	Second-Order rate = k[A] ³	
rate law	rate = k	rate = k[A]		
units of rate constant	M s ⁻¹	g-1	M ⁻¹ 9 ⁻¹	
integrated rate law	$[A] = -kt + [A]_0$	$\ln[A] = -kt + \ln[A]_0$	$\frac{1}{[A]} = kt + \left(\frac{1}{[A]_0}\right)$	

Arrhenius Equation: $k = Ae^{-E_a/RT}$

1. Consider the following reaction in aqueous solution:

a) Write the equation that relates the rate expressions for this reaction in terms of the disappearance of A and the disappearance of B.

b) If the rate of disappearance of A at a particular moment during the reaction is 1.4×10^{-4} mol L⁻¹ s⁻¹, what is the rate of disappearance of B at that moment?

$$-\frac{1}{1}\frac{\Delta[A]}{\Delta t} = -\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

$$+\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

$$+\frac{1}{2}\frac{\Delta[B]}{\Delta t} = \frac{1}{1}\frac{\Delta[B]}{\Delta t}$$

2. The following data have been determined for the reaction:

 $[2NO]+[Br_2] \rightarrow 2NOBr_2$ rate = $k [NO] + [Pr_2]$

		[NO] initial (M)	[Br ₂] initial (M)	Rate (mol L ⁻¹ s ⁻¹)
	1	0.02 2	0.02	9.6 × 10 ⁻²
4	2	0.04	0.02 2	3.8 × 10 ⁻¹ , 2
	3	0.02	0.04	1.9 × 10 ⁻¹

Determine 1) the rate law and 2) the rate constant for this reaction.

[NO] rate 1 = KENOJ" + EBZJ" rate 2 = KENOJ" + EBZJ" $\frac{q_{10} \times 10^{-2}}{3.8 \times 10^{-1}} = \left(\frac{0.02}{0.04}\right)^{m} - \frac{1}{2} \left(0.2526\right) = m \ln(0.5) \rightarrow m = \ln\left(\frac{0.2526}{0.5}\right)$ m=-0.122

[Br2]

Between rate 23, 3, the inital (M) and the rate are both dabled meaning it is the first order. [Br2]

D.

$$rate = K[2NO] + [B_{r_2}]'$$

 $3.8 \times 10^{-1} \frac{100}{1.5} = K[0.04M]' + [0.02M]'$
 $3.8 \times 10^{-1} \frac{100}{1.5} = K(0.06M)$
 $K = 10.33 \frac{1}{1.5}$

Box pour answer,

3. Which of the following graphs may have been created using the data gathered from the following reaction? Assume this is a single step reaction: $A \rightarrow 1B + 1C$

4. Dinitrogen pentoxide gas decomposes according to the equation: $2 N_2 O_{S(g)} \rightarrow 4 NO_{2(g)} + O_{2(g)}$. The first-order reaction was allowed to proceed at 40.0 °C. The initial concentration of $N_2 O_5$ was 0.400 M and after 20.0 minutes, the concentration changed to 0.289 M.

(b) After how many minutes will $[N_2O_5]$ be equal to 0.350 M?

5. The rate constant at 550 °C for the decomposition reaction $2H_2O2 \rightarrow 2H_2O + O_2$ is 6.0×10^{-7} s⁻¹, and the frequency factor (A) is 1.2×10^{12} s⁻¹. Determine the activation energy for the reaction.

6. At 600 K, compound A decomposes to form compounds B and C via a first-order reaction. Discuss the effect of each of the following conditions on the half-life of A: $A \rightarrow B + C$ $t = \frac{100}{50}$ $t = \frac{100}{50}$

(a) Increasing the initial concentration of A would overall increase more reacting molecules and would then reduce the half life of A

(b) Increasing the temperature at which the reaction occurs

increasing the temperature would cause the collisions to happen more rapidly making the half life of A even less.

- 7. Consider the following:
- 1 2NO_(g) \leftrightarrow N₂O_{2(g)}
- $z \supset N_2O_{2(g)} + H_{2(g)} \rightarrow N_2O_{(g)} + H_2O_{(g)}$
- $3 N_2O_{(g)} + H_{2(g)} \rightarrow N_{2(g)} + H_2O_{(g)}$

(fast, k₁ represents the forward rate constant, k₋₁ the reverse rate constant)

(slow, k₂ the rate constant)

(fast, k3 the rate constant)

(a) Write the overall reaction.

 $2NO + N_2O_2 + H_2 + N_2O + H_2 \rightarrow N_2O_2 + N_2O + H_2O + N_2 + H_2O$

$$2NO + 2H_2 \rightarrow 2H_2O + N_2$$

(b) Identify all intermediates.

$$N_2O_2$$

 N_2O

(c) Write the overall rate law.
1) rate, =
$$K_1[2N0] = K_1[N_2O_2]$$

 $N_2O_2 = \frac{K_12N0}{F_1}$
2) rate₂ = $K_2[N_2O_2] + [H_2]$
 $K_2(\frac{K_1[2N0]}{F_1}) + [H_2]$

$$\kappa_{2}\left(\underset{F_{-1}}{\overset{K}{\vdash}} [2NO]\right) + [H_{2}]$$

$$\kappa_{2}\left(\underset{F_{-1}}{\overset{K}{\vdash}} [2NO]\right) + [H_{2}]$$