Quiz 1 (Chapter 12)

Name:

Zero-OrderFirst-OrderSecond-Orderrate lawrate = krate = k[A]rate = k[A]²units of rate constant $M s^{-1}$ s^{-1} $M^{-1} s^{-1}$ integrated rate law $[A] = -kt + [A]_0$ $\ln[A] = -kt + \ln[A]_0$ $\frac{1}{[A]} = kt + (\frac{1}{[A]_0})$

Arrhenius Equation: $k = Ae^{-E_a/RT}$

1. Consider the following reaction in aqueous solution:

a) Write the equation that relates the rate expressions for this reaction in terms of the disappearance of A and the disappearance of B.

$$-\frac{\Delta[A]}{\Delta t} = -\frac{1}{2}\frac{\Delta[B]}{\Delta t}$$

b) If the rate of disappearance of A at a particular moment during the reaction is
$$1.4 \times 10^{-4}$$

mol L⁻¹ s⁻¹, what is the rate of
$$\frac{\Delta [B]}{\Delta t} = 2 \frac{\Delta [A]}{\Delta t} = 2 (1.4 \times 10^{-4} \text{ mm}) (5)$$
$$= (2.8 \times 10^{-4} \text{ mm}) (5)$$

2. The following data have been determined for the reaction:

		[NO] initial (M))	[Br ₂] initial (M)	Rate (mol L ⁻¹ s ⁻¹)
	1	0.02		0.02	9.6 × 10 ⁻²
	2	0.04		0.02	3.8 × 10 ⁻¹
16	3	0.02		0.04	1.9 × 10 ⁻¹
	7		5		

 $2NO + Br_2 \rightarrow 2NOBr_2$

Determine 1) the rate law and 2) the rate constant for this reaction.

) Rate Law $[NO] trial | I \not\in Z$ when [NO] X2, rate X4. thus rate = $[NO]^2$ $[Br_2] trial | I \not\in S$ $\frac{Forter}{Fode_2} = \frac{k/(NO)^2(Br_2)}{k(NO)^2(Br_2)} = \frac{q.6 \times 10^{-2}}{1.7 \times 10^{-1}} = \frac{[0.02]^{\times}}{[0.04]^{\times}}$ $= 0.505 = (\frac{1}{2})^{\times}$ $\frac{\chi = 1}{0.5}$

(2) Rate Constant
Using ticn 1
$$M^3$$

 $\frac{M}{5}$ 9.6 x ro⁻² = K [0.02]²[0.02]¹
 $K = 12000 \frac{1}{M^2 S}$

3. Which of the following graphs may have been created using the data gathered from the following reaction? Assume this is a single step reaction:

4. Dinitrogen pentoxide gas decomposes according to the equation: $2 N_2 O_{5(g)} \rightarrow 4 NO_{2(g)} + O_{2(g)}$. The first-order reaction was allowed to proceed at 40 °C. The initial concentration of N2O5 was 0.400 M and after 20 minutes, the concentration changed to 0.289 M.

5. The rate constant at 550 °C for the decomposition reaction $2H_2O2 \rightarrow 2H_2O + O_2$ is 6.0×10^{-7} s⁻¹, and the frequency factor (A) is 1.2×10^{12} s⁻¹. Determine the activation energy for the reaction.

$$k = A e^{-\frac{6}{7}RT} - \left(\frac{6\alpha}{8.314}, C550 + 273.15 k\right)$$

$$6.0 \times 10^{-7} s^{-1} = (1.2 \times 10^{12} s^{-1}) e^{-\left(\frac{6\alpha}{8.314}, C550 + 273.15 k\right)}$$

$$l_{14} 5 \times 10^{-19} = l_{16} e^{-\frac{6\alpha}{6843.67}}$$

$$- 42.14 = -\frac{6\alpha}{6843.67}$$

$$E\alpha = 288390 \frac{7}{160}$$

6. At 600 K, compound A decomposes to form compounds B and C via a first-order reaction. Discuss the effect of each of the following conditions on the half-life of A:

(a)	Increasing the initial concentration of A	

None Half life is based on rate constant, not concentration. ex) (00 M - SOM 50 M - 25 M (20 min 20 min) Some time.

(2)

(b) Increasing the temperature at which the reaction occurs

Shorter half life increasing temp increases the reaction botc. time readed to spend 50% will be shorter.

7. Consider the following:

